An approximation formula for basket option prices under local stochastic volatility with jumps: An application to commodity markets
نویسندگان
چکیده
This paper develops a new approximation formula for pricing basket options in a localstochastic volatilitymodel with jumps. In particular, themodel admits local volatility functions and jump components in not only the underlying asset price processes, but also the volatility processes. To the best of our knowledge, the proposed formula is the first one which achieves an analytical approximation for the basket option prices under this type of the models. Moreover, in numerical experiments, we provide approximate prices for basket options on the WTI futures and Brent futures based on the parameters through calibration to the plain-vanilla option prices, and confirm the validity of our approximation formula. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Simple approximations for option pricing under mean reversion and stochastic volatility
This paper provides simple approximations for evaluating option prices and implied volatilities under stochastic volatility. Simple recursive formulae are derived that can easily be implemented in spreadsheets. The traditional random walk assumption, dominating in the analysis of financial markets, is compared with mean reversion which is often more relevant in commodity markets. Deterministic ...
متن کاملExotic derivatives under stochastic volatility models with jumps
In equity and foreign exchange markets the risk-neutral dynamics of the underlying asset are commonly represented by stochastic volatility models with jumps. In this paper we consider a dense subclass of such models and develop analytically tractable formulae for the prices of a range of first-generation exotic derivatives. We provide closed form formulae for the Fourier transforms of vanilla a...
متن کاملImplied and Local Volatilities under Stochastic Volatility
For asset prices that follow stochastic-volatility diffusions, we use asymptotic methods to investigate the behavior of the local volatilities and Black–Scholes volatilities implied by option prices, and to relate this behavior to the parameters of the stochastic volatility process. We also give applications, including risk-premium-based explanations of the biases in some näıve pricing and hedg...
متن کاملBasket Options Valuation for a Local Volatility Jump-Diffusion Model with the Asymptotic Expansion Method
In this paper we discuss the basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated local volatility diffusion processes with systematic jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic processes and use the asymptotic expansion method to approximate the conditional expectation of the stochastic vari...
متن کاملA Control Variate Method to Evaluate Option Prices under Multi-factor Stochastic Volatility Models
We propose a control variate method with multiple controls to effectively reduce variances of Monte Carlo simulations for pricing European options under multifactor stochastic volatility models. Based on an application of Ito’s formula, the option price is decomposed by its discounted payoff and stochastic integrals with the appearance of gradients of the unknown option price with respect to st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 292 شماره
صفحات -
تاریخ انتشار 2016